FEABHAS

Developing Linux Device Drivers

Course category Embedded Linux
Training area Operating Systems
Course code EL-504

Duration 5 days

Additional information Available for on-site delivery only. Can be delivered remotely or Face-to-Face.

Implementing Linux on custom hardware will, in most cases, require you to write device drivers.

This course will show you how to create Linux Device Drivers and that work with a recent version of the Linux
kernel that are able to handle hardware events and present a standard interface to applications.

This course presents a detailed view of Linux device drivers with an emphasis on topics specific to embedded
environments: cross compilation; remote debugging and direct hardware manipulation. It uses a combination
of theory and practice, using a development board with an ARM core.

No prior knowledge of Linux device drivers is assumed, making it ideal for engineers porting from code from an
RTOS to Linux.

Course objectives:

o Demonstrate how to write drivers for custom hardware

o Provide insight into porting drivers from an RTOS to Linux, e.g. the separation between application and
kernel code

o Describe the development tools needed, including debug strategies

o Examine the way drivers can affect real-time behaviour and best practice to avoid scheduling latencies

Delegates will learn:


https://www.feabhas.com/course-catetory/embedded-linux
https://www.feabhas.com/training-a/infrastructure-technologies
https://www.feabhas.com/

How to write kernel modules

(]

How to create robust drivers using mutexes and spinlocks to serialise access to shared data

o

o How to debug kernel code running on a remote embedded target
Working with GPIO
How to handle interrupts, including deferred processing using tasklets and work queues

(]

o

How to access hardware resources

o

o The details of memory management and memory mapping techniques
An introduction to writing a USB driver

o

Pre-requisites:

o Good 'C’' programming skills
General knowledge of an RTOS or embedded operating systems

(]

o

Knowledge of Linux or Unix is essential

o

Some knowledge of Linux user space is an advantage
o Able to use acommand line interface

Who should attend:

Software engineers who are developing applications for embedded or real-time Linux.

Engineers wishing to assess the suitability of Linux for their next application.

Duration:

Five days.

Course material:

o Student workbook

Course workshop

During the lab sessions, students will write several fully-function device drivers, including a FIFO, a RAM disk
and a loop-back network interface. All exercises are developed and cross-compiled on a PC running Linux.

The target platform will be the BeagleBone Black, which uses an ARM Cortex-A8. This will help delegates
understand the issues encountered when writing for embedded platforms.

Writing Kernel Modules

o Structure of a kernel module
o Compiling and loading modules



Introduction to character device drivers

o Major and minor numbers
o Basic operations — open, read, write and release
o Example driver based on a fifo

Debugging Kernel code and device drivers

o Kernel oops messages
o Debugging with gdb and kgdb

The Linux driver model

o sysfsand the /sys directory
o Adding device classes and class attributes

Task synchronisation

o Putting tasks to sleep using wait queues
o Re-entrancy issues
o Mutexes, semaphores and spinlocks

Device Tree

o Anintroduction to device tree and it's usage
o Creating an example platform driver to bridge the Device Tree — Kernel divide

Input and output

o Interfacing with the real world
o Accessing memory and i/o mapped resources

Time

o Delays and sleeps
o Using kernel timers.

Interrupts

o Installing an interrupt handler; interrupt context and process context
o Deferred processing using a bottom half or tasklet.



Memory management

o Allocating memory by pages and bytes

o Slab caches

o Techniques to map device memory directly into user space using mmap
o Getting direct access to user buffers

Block Device Drivers

o Anatomy of a block device: example RAM disk driver

USB Device Drivers

o How USB devices work with the kernel and an introduction to Linux USB device model.

Network Device Drivers

o Anatomy of a network device: example loop-back interface

Board Support Packages

o Customising the Linux configuration menus

Feabhas Ltd - PO Box 4259, Marlborough, SN8 9FJ, UK info@feabhas.com www.feabhas.com


mailto:info@feabhas.com
https://www.feabhas.com/

