FEABHAS

Transitioning to Modern C++ (C++11/14/17)

Course category C++ Training Courses
Training area Programming Languages
Course code AC++11-401

Duration 4 days

Additional information Available for on-site delivery only. Can be delivered remotely or Face-to-Face.

This four-day course introduces the new features of Modern C++ and how they relate to the previous
incarnation, C++98.

The C++11 standard marks a fundamental change to the C++ language. Bjarne Stroustrup, originator of C++,
refers to it as “feeling like a completely new language”. The course looks at some of the changes to the
language and how they affect the way we write C++ code.

The course covers C++11, C++14 and C++17 and where relevant refers to C++20.

Course objectives:

o Provide a background into the C++ features that have changed

o Provide an overview of the new language features

o Understand how the new features change C++ programming style

o Give practical experience of the new features

o Give the confidence to apply these new concepts to your next project

Delegates will learn:

o The new extensions to the C++ language

o Some of the performance impacts of the new features
o The extensions to the Standard Template Library

o Some of the new Standard Libraries

o Anintroduction to the new C++ threading model

Pre-requisites:

This course is not intended to be a comprehensive C++ course and it is expected that students will already have
a solid working knowledge of C++98, in particular.


https://www.feabhas.com/course-catetory/c-training-courses-0
https://www.feabhas.com/training-a/programming-languages
https://www.feabhas.com/

o Object Oriented design
o RAIl
o The Standard Template Library

Who should attend?
This course is aimed at experienced C++ developers who want to quickly understand the new facilities of
C++11.

Duration:

o Fourdays

Course materials:

o Delegate manual

Course workshop:

At least 50% of the course is hands-on exercises. Students will be programming on a platform environment,
either Windows or Linux, using an appropriate toolchain.

Simple types

o Automatic type deduction
o Constant-expressions

o Using aliases

o nullptr

Constructing objects

o Class definition and objects
o Cascading constructors

o Default constructors

o Brace initialisation syntax

o Initializer lists

Sequence containers

o std:array and std:vector
o Allocators

o [terators

o Range-for



Associative containers

o std:tuple
o std:unordered_map

Specialisation

o Inheritance and substitution
o Overriding

o Dynamic polymorphism

o Pure virtual functions

o Interfaces

o Cross-casting

Resource Management

o Managing object lifetimes
o The Rule of Three
o The Copy-Swap idiom

Move Semantics

o rvalue references

o Resource pilfering

o Move constructors

o The Rule of Four (and a half)

Smart pointers

o unique_ptr
o shared_ptr
o weak_ptr

Template functions

o Generic functions
o Type deduction rules
o The template build mechanism

Template classes

o Generic classes



o Templates and polymorphism
o Policies

Perfect forwarding

o Meyers’ Universal references
o Variadic templates

STL Algorithms

o The algorithm concept
o Adapters
o Binding

Function objects

o Lambdas
o Generic lambdas
o std:function

Threading

o Creating threads
o Joining and detaching threads
o Accessing the underlying OS

Atomic types

o std:atomics
o The C++ memory consistency model

Mutual Exclusion

o stdimutex
o scope-locked idiom
o Condition variables

Asynchronous tasks

o Deferred synchronous calls
o Promises and futures



o Packaged tasks
o std:async()

User-defined literals

o Rom-able classes
o operator””

Feabhas Ltd - PO Box 4259, Marlborough, SN8 9FJ, UK info@feabhas.com www.feabhas.com


mailto:info@feabhas.com
https://www.feabhas.com/

