FEABHAS

Advanced Real-Time Modern C++ (C++11/14/17)

Course category C++ Training Courses
Training area Programming Languages
Course code AC++11-502

Duration 5 days

Price exc VAT £2900.00

Additional information Our public course schedule is suspended until 2023. We can still offer this course
on-site either remotely delivered or face-to-face.

The term ‘Modern C++' is used to describe the current best practices for the use of C++. In some cases, this
may mean new capabilities of the language; in other cases it means more effective ways of performing familiar
programming tasks.

This advanced course is designed to transition experienced C++ programmers to the latest incarnation of the
C++ language. The focus is to teach good programming practice using Modern C++ and to put the latest
features of the language into context.

The course covers C++11, C++14 and C++17.

Course objectives:

o To provide a deep understanding of the C++ programming language.
o To give you practical experience of writing Modern C++ on hosted embedded systems
o To give you the confidence to apply these new concepts to your next project.

Delegates will learn:

o Modern C++ syntax, semantics and library features
The Application Binary Interface (ABI) and memory model of C++

o

(]

ldioms and patterns for building effective C++ programs

o

Real-time and concurrency design issues

Pre-requisites:

o A good working knowledge of C++ (knowledge of C++11 onwards is useful, but not essential)
o Some experience of development multi-threaded applications is useful.
o A working understanding of machine architectures is helpful.

https://www.feabhas.com/course-catetory/c-training-courses-0
https://www.feabhas.com/training-a/programming-languages
https://www.feabhas.com/

Who should attend:

o This course is aimed at C++ programmers who are using earlier standards of C++, and experienced C++
programmers who want to extend and expand their C++ skills.

Duration:

o Five days.

Course materials:

o Delegate manual

Course workshop:

o Attendees perform hands-on exercises during course practicals. Approximately 50% of the course is given
over to practical work. The tools used are indicative of current modern working practices in the embedded
arena.

Part 1 - Core concepts

Build process

o The C++ build process

o The preprocessor stage

o Compiler and linker stages

o Linking embedded and hosted applications

The C++ object model

o Declaration and definition

o Brace initialisation syntax

o Pointers and references

o Empty pointer validation

o Temporary object materialization

User defined types

o The Single Responsibility Principle (SRP)
o Member variable initialisation
o Constructors

o Re-enabling the default constructor

o Delegating constructors

o Explicit constructors

o Inline initialisation of static member variables

Type deduction

o Automatic type deduction

o Qualifying auto-deduced types

o The decltype operator

o Auto-deduced function return types
o Trailing return-type syntax

Constants

o Numeric and character literals

o Enum classes

o constexpr objects

o constexpr functions and classes
o User-defined literals

o std:string_view

Functions call ABI

o Function declaration and definition
o Procedure Activation Record
o Member functions

Functions

o Function parameters

o Pass-by-value, pointer and reference

o const member functions

o Returning by value

o Named Return Value Optimisation (NRVO)
o Return Value Optimisation (RVO)

o Copy elision

o Factory functions

o Auto-deduced function return types

o Compiler diagnostics

Arrays and iterators

o Arrays of objects

o std:array

o Arrays as parameters
o Iterators

o range-for statement

Vocabulary types

o Structured bindings

o std:pair and std:tuple

o std:optional and std::expected

o std:variant and std:visit

o std:any and small buffer optimisation

Part 2 - Object Oriented Design

Composite objects

o Composition

o Aggregation

o Composite object initialisation
o Optional composite objects

Connecting objects

o Unidirectional Associations
o Bidirectional association
o Forward declarations

Creating substitutable types

o Specialisation vs inheritance

o Substitution

o The Liskov Substitution principle
o The virtual function ABI

Abstract Base Classes

o The Single Responsibility principle
o Pure virtual functions

o Abstract types

o Dynamic cast

Realising interfaces

o The Dependency Inversion principle
o The Interface concept

o Pure virtual functions

o The Interface Segregation principle
o Cross casting

Part 3 - Standard Library

Sequence containers

o std:vector

o std:bitset

o std:list and std:forward_list

o Container classes and std:initializer_list

Associative containers

o std:set
o std:pair and std:map
o std:unordered map

Algorithms

o The Standard Library model

o std:fill and std:sort

o std:find, std:countand std:accumulate
o The Remove-Erase idiom

o std:transform and std::bind

o std:bind placeholders

Callable objects

o Functors

o Lambda functor syntax

o Lambdas as a block-scoped function
o Capture context

o Capture initialisers

o std:function and std:invoke

Part 4 - Resource management
Resource management

o Disabling copy constructor and assignment
o Deep copy constructor and assignment

o The Rule of the Three

o Copy-swap idiom

o Virtual copy constructor

Move semantics

o Compiler generated copy operations

o 'Resource pilfering'

o L-value, R-value and PR-value expressions
o X-value objects

o Move constructor and assignment

o std:move

o Compiler generated move operations

Smart pointers

o The problem with raw pointers for memory management
o std:unique_ptr

o std:shared_ptr

o std_weak_ptr

C++ Strings

o C-Strings (NTBS)

o Raw String Literals

o std:string

o Short String Optimization (SSO)
o std:string_view

Part 5 - Templates

Template functions

o The problems with function-like macros
o Template functions

o Template parameter type deduction

o The forwarding reference idiom

o Template function overloading

Template classes

o Generic classes
o Template type deduction
o Template deduction guidelines

Templates and polymorphism

o The cost of virtual interfaces
o Policy patterns

Perfect forwarding

o Variadic templates
o std:forward
o std:forward vs std:move

Part 6 - Concurrency

Threading

o Concurrency vs parallelism
o std:thread

o Run policies

o Polymorphic threads

o Waiting for threads to finish
o Detaching threads

Mutual exclusion

o Race conditions

o Mutual exclusion

o The scope-locked idiom

o std:lock_guard and std::unique_lock

Condition variables

o Thread synchronisation
o The Guarded Suspension pattern

Atomic types

o Shared objects in multiprocessor environments
o Why volatile is inappropriate

o Atomic types
o Load-acquire / Store-release barriers

Asynchronous tasks

o The Asynchronous Message pattern
o The Promise / Future pattern

o std:async and packaged tasks

o Launch policies

Feabhas Ltd - PO Box 4259, Marlborough, SN8 9FJ, UK info@feabhas.com www.feabhas.com

mailto:info@feabhas.com
https://www.feabhas.com/

