FEABHAS

Modern C++ for Embedded Systems (C++11/14/17)

Course category C++ Training Courses
Training area Programming Languages
Course code C++11-507

Duration 5 days

Additional information Available for on-site delivery only. Can be delivered remotely or Face-to-Face.

C++is a remarkably powerful systems-programming language, combining multiple programming paradigms —
Procedural, Object Oriented and Generic — with a small, highly-efficient run-time environment. This makes it a
strong candidate for building complex high-performance embedded systems.

The C++11 standard marked a fundamental change to the C++ language, introducing new idioms and more
effective ways to build systems. This new style of programming is referred to as ‘Modern C++'.

This practical, hands-on course introduces the C++ language for use on resource-constrained, real-time
embedded applications.

The course highlights areas of concern for real-time and embedded development. The focus is on developing
effective, maintainable and efficient C++ programs.

The course covers C++11, C++14 and C++17 and where relevant refers to C++20.

Overview:

A five-day course that provides a practical overview of C++ focusing on developing object-oriented programs in
an embedded, real-time environment.

Course objectives:

o To provide a solid understanding of the essentials of the C++ programming language.

o To give you practical experience of writing Modern C++ for resource-constrained real-time and embedded
systems.

o To give you the confidence to apply these new concepts to your next project.

Delegates will learn:

o Modern C++ syntax and semantics and idioms


https://www.feabhas.com/course-catetory/c-training-courses-0
https://www.feabhas.com/training-a/programming-languages
https://www.feabhas.com/

o Using C++ for hardware manipulation
o The Application Binary Interface (ABI) and memory model of C++
o ldioms and patterns for building effective C++ programs

Pre-requisites:

o A strong working knowledge of C
o Embedded development skills are useful, but not essential

Who should attend:

This course is aimed at C programmers who are moving to C++ for their embedded development.

Duration:

o Five days

Course materials:

o Delegate manual
o Delegate workbook

Course workshop:

Attendees perform hands-on embedded programming, during course practicals. Approximately 50% of the
course is given over to practical work.

The board targeted is an ARM Cortex-M based MCU which gives attendees a real sense of embedded
application development.

Program structure

"Hello World!"
The build process
Object files

o Linking Activities

o

o

(]

Stream I/0

o C++ stream I/0 objects
o Stream modifiers



The C++ object model

o Objects and types

o Brace initialisation

o Object visibility scope
o Object lifetime

Constants

o Literals
o Compile-time constant expressions
o Enum classes

Pointers

o Dynamic objects
o The value of an ‘empty’ pointer
o Pointers and const

Hardware manipulation

o Memory-mapped registers are accessed via pointers
o volatile objects

o Bitwise Operators

o General Purpose Input / Output (GPIO)

Structures

o User-defined types
o Packing
o Performance implications of packing

Arrays

o Containers

o The iterator model

o Range-for statement

o Applying algorithms to arrays — filling and sorting

Functions

o The 'One Declaration Rule'



o How function arguments are passed
o The overheads of pass-by-value

o Pass-by-reference

o std:tuple represents a general n-tuple
o Function overloading

o Function inlining

Structuring code

o Separating Interface and Implementation
o Compilation Dependencies
o Using the _cplusplus macro

Namespaces

o Defining functions within a namespace
o Ambiguity when accessing namespace members

Principles of Object Oriented Design

o Coupling

o Encapsulation

o Cohesion

o The Single Responsibility Principle
o Abstraction

User-defined types

o Creating new types
o Access specifiers
o 'this' pointer

Initialising objects

o Non-Static Data Member Initializers (NSDMIs)
o The compiler-supplied default constructor
o The class destructor

Objects and functions

o Pass-by-value
o Explicit constructors



o Disabling pass-by-value

o Disabling copying

o Return Value Optimisation (RVO)
o 'Copy elision'

Static

o The static storage specifier
o Static member variables
o Static member functions

Object-based I/0

o An Object-Oriented approach to 1/0
o Using a struct for I/0 device access
o Nesting a structure overlay in a class

Operator overloading

o Problem domain types
o Overloading the stream operator

o Conversions to other user-defined types

Building composite objects

o Composite aggregation
o Overriding default initialisers
o The composite object on the stack...

Connecting objects

o Connected objects form a system
o Forming the Association (Client-Server)
o Bi-directional associations...
o Friend functions

o Forward references to namespace elements

Creating Substitutable Objects

o Specialisation
o Inheritance
o Overriding base class behaviour



o The 'protected interface'

o The Liskov Substitution Principle

o Late binding (of polymorphic operations)
o Dynamic binding

Abstract Base Classes

o Anabstract class
o Extending derived classes
o Safely accessing the extended interface

Realising Interfaces

o The Dependency Inversion Principle
o Provided and Required Interfaces

o The Interface Segregation Principle
o Cross-casting

Dynamic objects

o Memory model

o std:unique_ptr allows single ownership
o std:shared_ptr is reference-counted

o std:weak_ptr

o Resolving circular dependency issues

Dynamic containers

o Sequence containers

o std:vector is a dynamically-resizable array
o std:listis a doubly-linked list

o Key-value containers — std::pair

o Sorted containers

o Containers and memory allocation

Callable objects

o Function objects

o Lambdas

o Under the hood

o Using std::function for call-back
o Containers of callable objects



Initializer lists

o std:initializer_list
o initializer_list overload rules

Template functions

o (eneric programming
o Function templates
o Overloading with template functions

Template classes

o Class templates
o Lazy instantiation
o Member Functions of Class Templates

Feabhas Ltd - www.feabhas.com


https://www.feabhas.com/

