FEABHAS

Advanced Modern C++ for Embedded Developers (C++11/14/17)

Course category C++ Training Courses
Training area Programming Languages
Course code AC++11-501

Duration 5 days

Price exc VAT £2900.00

Additional information Our public course schedule is suspended until 2023. We can still offer this course
on-site either remotely delivered or face-to-face.

The term ‘Modern C++' is used to describe the current best practices for the use of C++. In some cases, this
may mean new capabilities of the language; in other cases it means more effective ways of performing familiar
programming tasks.

This practical, hands-on course expands on the Modern C++ language for use on resource-constrained, real-
time embedded applications. The course highlights areas of concern for real-time and embedded development.
The focus is on developing effective, maintainable and efficient C++ programs.

The course covers C++11, C++14 and C++17 and where relevant refers to C++20.

Course objectives:

o To provide a deep understanding of the Modern C++ programming language.

o To give you practical experience of writing Modern C++ for resource-constrained real-time and embedded
systems.

o To give you the confidence to apply these new concepts to your next project.

Delegates will learn:

o Modern C++ syntax and semantics and idioms

o Using C++ for hardware manipulation

o The Application Binary Interface (ABI) and memory model of C++
o Idioms and patterns for building effective C++ programs

o Real-time and concurrency design issues

Pre-requisites:

o A good working knowledge of Modern C++

https://www.feabhas.com/course-catetory/c-training-courses-0
https://www.feabhas.com/training-a/programming-languages
https://www.feabhas.com/

o Embedded development skills are useful, but not essential

Who should attend:

This course is aimed at experienced Modern C++ programmers who want to apply Modern C++ to a low-
level/deeply-embedded target environment.

Duration:

Five days.

Course materials:

o Delegate manual
o Delegate workbook

Course workshop:

Attendees perform hands-on embedded programming, during course practicals. Approximately 50% of the
course is given over to practical work. The board targeted is an ARM Cortex-M based MCU which gives
attendees a real sense of embedded application development.

The C++ object model

o Declaration and definition

o Brace initialisation syntax

o ODR-use and 'The One Declaration Rule'
o Object scope and lifetime

o The C++ object (memory) model

The C++ build process

o The seven stages of compilation

o Object files

o Symbol tables

o Linkage

o ELF files

o Object conversion for embedded systems

The C++ object model

o Declaration and definition

o Brace initialisation syntax

o ODR-use and 'The One Declaration Rule'
o Object scope and lifetime

o The C++ object (memory) model

Expressions

o Expressions

o [|-values and r-values
o statements

o Sequence points

User defined types

o Aggregate types — structs

o Brace elision

o Classes

o Non-Static Data Member Initialisers
o Delegating constructors

o std:initialize

Functions

o Function call ABIs

o Input, Output and Input-Output parameters
o const correctness

o Copy elision

o Attributes

Type deduction

o Automatic type deduction

o Automatic function return-type deduction
o Structured bindings

o Using aliases

Constants

o Literals

o Const qualification
o Constexpr

o constexpr functions
o enum class

o enum underlying type

Hardware manipulation

o Using pointers for I/0 access
o Bit manipulation
o The volatile qualifier

Object-based I/0

o Nested pointer approaches
o Pointer-offset approaches
o Structure overlay approaches

Composition

o Nested object construction

Connecting objects

o Unidirectional Associations
o Bidirectional association
o Forward declarations

Bit fields and unions

o Bit field structures

o Bit field structure overlay for hardware

o The size of a bit field structure

o Alignment issues

o Unions

o Using unions and bit field structures together

Creating substitutable types

o Specialisation vs inheritance

o Substitution

o The Liskov Substitution principle
o The virtual function ABI

Abstract Base Classes

o The Single Responsibility principle
o Pure virtual functions

o Abstract types

o Dynamic cast

Realising interfaces

o The Dependency Inversion principle
o The Interface concept

o Pure virtual classes

o The Interface Segregation principle

STL containers

o The problems with C-style arrays
o std:array

o Dynamic sequence containers

o Sets and maps

o Hash-maps - std::unordered_map
o Emplacement

Algorithms

o The iterator model
o Range-for
o Algorithms

Callable objects

o Lambda expressions

o The 'block-scoped function' concept
o Generic lambdas

o std:function

Resource management

o The resource lifetime problem

o Overloading the copy constructor

o Overloading the assignment operator
o The 'Rule of the Big Three'

o The copy-swap idiom

Move semantics

o

o

o

o

The cost of copying

'Resource pilfering'

Move constructors

The Rule of Four and A Half

Move assignment

std:move

Compiler overload provision for copy / swap

Smart pointers

The problem with raw pointers for memory management
std:unique_ptr

std::shared_ptr

std_weak_ptr

Template functions

The problems with function-like macros
Template functions

Template parameter type deduction
The forwarding reference idiom

Template classes

o

o

o

Generic classes
Template type deduction
Template deduction guidelines

Templates and polymorphism

o

o

The cost of virtual interfaces
Policy patterns

Perfect forwarding

o

o

o

Variadic templates
std:forward
std:forward vs std:move

Interrupts

o The interrupt mechanism
o Encapsulating an interrupt within a class
o Race conditions

Trait classes

o Making generic code more specific
o Compile-time lookup

o Trait classes

o Trait classes vs auto

Appendices

Appendix - User defined literals

o 'Rommable’ types

o operator

Appendix - Associative containers

o std:set
o std:map
o std:unordered_map

Appendix - Variable types

o std:optional

o std:any

o std:variant

o The Visitor pattern

Appendix - STL allocators

o Replacing the STL allocator

o Memory resources

o Standard library memory resources
o Writing your own memory resources
o Polymorphic allocators

Appendix - Exception handling

o Error handling strategies

o Throwing/catching exceptions

o Building an exception hierarchy

o Standard library exceptions

o Specifying your exception contract

Appendix - Conditional coding

o Using the pre-processor for conditional inclusion
o Inline namespaces

o Tagdispatch

o SFINAE

o std:enable_if

o constexpr-if

Feabhas Ltd - PO Box 4259, Marlborough, SN8 9FJ, UK info@feabhas.com www.feabhas.com

mailto:info@feabhas.com
https://www.feabhas.com/

