FEABHAS

Migrating to C++20/23

Course category C++ Training Courses
Training area Programming Languages
Course code AC++20-302

Duration 3 days

Additional information Available for on-site delivery only. Can be delivered remotely or Face-to-Face.

Overview:

This advanced 3-day course is designed to transition experienced C++ programmers to the latest features of
C++17, C++20 and C++23. The focus is to teach good programming practice using Modern C++ and to put the
latest features of the language into context.

Course Objectives:

o To provide a review of C++17 and an appreciation of the new features of C++20 and C++23
o To give you practical experience of working C++20/23 syntax and libraries
o To give you the confidence to apply these new concepts to your next project

Delegates will learn:

o

New C++17/20/23 syntax, semantics and library features

(]

Class concepts, requirements and polymorphic allocators
o Ranges, views and coroutines for working with sequences
o Modules and interfaces for structuring source code

Pre-requisites:

o A good working knowledge of C++11/14 and the standard library
o Anunderstanding of machine architectures is helpful.

Who should attend:

This course is aimed at C++ programmers who are using earlier standards of C++, and experienced C++
programmers who want to extend and expand their C++ skills.


https://www.feabhas.com/course-catetory/c-training-courses-0
https://www.feabhas.com/training-a/programming-languages
https://www.feabhas.com/

Duration:

Three days.

Course Materials:

o Delegate manual

Course Workshop:

Attendees perform hands-on exercises during course practicals. Approximately 40% of the course is given over
to practical work. The tools used are indicative of current modern working practices in the embedded arena.

Day 1

Introduction

Language Changes

o constexpr virtual functions

o consteval

o if constexpr () and if consteval ()
o flow control initialiser clauses

o compiler diagnostics

o preprocessor changes

Data type updates

o 2'scomplement integer type

o extended floating point types

o designated initializers for struct

o non arithmetic std::byte type

o byte ordering using std::byteswap

o restricted use of volatile objects

o using statement with enum and enumerated value types
o string literals, string types, Unicode support

o invoking constructors with std::construct_at

String formatting

o string literals, string types, Unicode support
o using std:to_string

o the std:string_view class

o user defined literals



o string formatting and std::format
o the print() and printin() functions

Vocabulary types

o C++17 structured bindings
o std:pair

o std:optional

o std:expected

o std:tuple

o std:variant

o std:iany

Template updates

o class template argument deduction
o abbreviated function templates

o template deduction guides

o template lambdas

Comparing objects

o comparing objects of the same/different types

o equality semantics

o equality testing with operator==

o default operator==

o ordering semantics: strongly ordered, and weakly ordered

o comparison (starship) operator < = > and default operator < = >

Day 2

Requirements

o implicit class requirements for templates

o defining template requirements with requires
o typetraits

o function requirement modifiers

o ad hoc constraints

o non template constraints

Concepts

o concepts and requirements



o using concepts in templates

o standard concepts

o concepts and constraints

o requires expressions

o constrained auto types

o concepts and perfect forwarding

Ranges

o ranges concepts

o range-for structured bindings

o defining ranges with std::span

o multi-dimensional structures using std::mdspan
o multiple parameters to subscript operator

o algorithms and ranges

o range concept types

o projections

o writing a classic iterator

o using an end sentinel iterator

Views

o Views concepts
o Vview pipelines
o writing views
o Vview iterator
o view adapter

Day 3

Polymorphic allocators

o problems with container allocators

o polymorphic allocator model

o polymorphic memory resources (PMR)

o writing a polymorphic allocator

o standard memory resources

o using std:monotonic_buffer_resource

o understanding std::unsynchronized_pool_resource

Coroutines

o coroutine concepts
o co_yield and co_return statements



o std:generator

Modules

o module concepts

o mainstream compiler support for modules
o module, import and export statements
o Global Module Fragment

o single file modules

o module linkage

o multiple compilation units

o modules and namespaces

o modules and header files

o standard library support

o module partitions

Concurrency

o RAII/RDID threads using std:jthread

o atomic wait and notify

o binary and counting semaphores

o multi-thread synchronisation with std:latch
o multi-thread synchronisation with std:barrier

Feabhas Ltd - PO Box 4259, Marlborough, SN8 9FJ, UK

info@feabhas.com

www.feabhas.com


mailto:info@feabhas.com
https://www.feabhas.com/

